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Molecular Pathogenic Basis for GABRG2 Mutations
Associated With a Spectrum of Epilepsy Syndromes,
From Generalized Absence Epilepsy to Dravet Syndrome
Jing-Qiong Kang, MD, PhD; Robert L. Macdonald, MD, PhD

OBJECTIVE In this review article, we focus on the molecular pathogenic basis for genetic
generalized epilepsies associated with mutations in the inhibitory γ-aminobutyric acid
(GABAA) receptor γ2 subunit gene, GABRG2 (OMIM 137164), an established epilepsy gene.

OBSERVATIONS The γ-aminobutyric acid (GABAA) receptor γ2 subunit gene, GABRG2, is
abundantly expressed in the mammalian brain, and its encoded γ2 subunit is assembled into
αβγ2 receptors, which are the major GABAA receptor isoforms in the brain. The γ2 subunits
have a critical role in GABAA receptor trafficking and clustering at synapses. They reside inside
the endoplasmic reticulum after synthesis, where they oligomerize with other binding
partners, such as α and β subunits, and further assemble into pentameric receptors. Only
correctly assembled receptors can traffic beyond the endoplasmic reticulum and reach the
cell surface and synapses, where they conduct chloride ion current when activated by GABA.
Mutations in GABRG2 have been associated with simple febrile seizures and with genetic
epilepsy syndromes, including childhood absence epilepsy, generalized epilepsy with febrile
seizures plus, and Dravet syndrome or severe myoclonic epilepsy in infancy. The mutations
include missense, nonsense, and frameshift mutations, as well as splice-site and deletion
mutations. The mutations have been identified in both coding and noncoding sequences like
splice sites. In the coding sequence, these mutations are found in multiple locations, including
the extracellular N-terminus, transmembrane domains, and transmembrane
3–transmembrane 4 intracellular loop. All of these mutations reduced channel function but to
different extents and by diverse mechanisms, including nonsense-mediated messenger RNA
decay, endoplasmic reticulum–associated protein degradation, dominant negative
suppression of partnering subunits, mutant subunit aggregation causing cell stress and cell
death, and gating defects.

CONCLUSIONS AND RELEVANCE We conclude that the epilepsy phenotypic heterogeneity
associated with GABRG2 mutations may be related to the extent of the reduction of GABAA

receptor channel function and the differential dominant negative suppression, as well to
toxicity related to the metabolism of mutant subunit proteins resulting from each mutant γ2
subunit, in addition to different genetic backgrounds.
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G enetic epilepsies refer to epilepsy syndromes previously
classified as idiopathic generalized epilepsies and have
been associated with gene mutations using current ad-

vances in genetics and sequencing technology.1 There are many ion
channel and non–ion channel gene mutations that have been iden-
tified in epilepsy.2 These ion channel genes include those encoding
proteins that form channels conducting sodium, potassium, cal-
cium, and chloride ions. Those non–ion channel genes include an
overwhelmingly comprehensive and still growing list of genes,
with their function involved in protein endocytosis, synaptic devel-
opment, and transcription, as well as many unknown mechanisms.
To date, most functional studies of epilepsy genetic mutations have
been focused on ion channel genes. Mutation of ion channels that
cause either a “gain of function” in excitatory neurotransmission or
a “loss of function” in inhibitory neurotransmission could impair the
balance of excitation and inhibition, leading to disinhibition and hy-
perexcitability in the brain. In this review article, we focus on the mo-
lecular pathogenic basis for genetic generalized epilepsies associ-
ated with mutations in the inhibitory γ-aminobutyric acid (GABAA)
receptor γ2 subunit gene, GABRG2 (OMIM 137164), an established
epilepsy gene that we have extensively characterized.

Generalized epilepsies (GEs) are the most common neurologi-
cal disorders in the pediatric population and one of the most common
neurological disorders in adults.3 They include several different epi-
lepsy syndromes that vary in clinical severity from benign childhood
absence epilepsy (CAE), which may remit with age, to more severe
juvenile myoclonic epilepsy and generalized epilepsy with febrile sei-
zures plus (GEFS+). A subpopulation of GEs are associated with se-
vere recurrent seizures and cognitive decline that have been referred
to as epileptic encephalopathies, which include severe myoclonic epi-
lepsy in infancy or Dravet syndrome, West syndrome or infantile
spasms, Ohtohara syndrome, and Lennox-Gastaut syndrome.

GEs and GABAA Receptors
The GABAA receptors are the primary mediators of fast inhibitory
synaptic transmission in the central nervous system and have been
repeatedly documented to have a critical role in animal models of
seizures.4-11 These inhibitory receptors are heteropentamers formed
by assembly of multiple subunit subtypes (α1-α6, β1-β3, γ1-γ3, δ, ε,
π, θ, and ρ1-ρ3). These receptors form chloride ion channels and most
commonly contain 2 α subunits, 2 β subunits, and a γ or δ subunit.
The GABAA receptors mediate both phasic, inhibitory synaptic trans-
mission and tonic, perisynaptic inhibition, and several antiepileptic
drugs, including benzodiazepines, barbiturates, and neuros-
teroids, act by enhancing GABAA receptor channel currents.12 All
GABAA receptor subunits share a similar protein topology, which con-
tains a large extracellular N-terminus, 4 transmembrane domains,
a small extracellular loop between the second and third transmem-
brane domains, and a larger intracellular loop between the third and
fourth transmembrane domains.

It is important to understand the normal trafficking route of
GABAA receptor subunits to understand the molecular defects result-
ing from the receptor subunit mutations (Figure 1). All GABAA recep-
tor subunits are transported to the endoplasmic reticulum (ER) after
synthesis and signal peptide cleavage. Therefore, the mature pep-
tide that will be assembled into pentameric receptors will not con-
tain the signal peptide. In the ER, the subunit first oligomerizes with
its binding partners, forming homodimers or heterodimers like α-α

dimers or α-β dimers.13 These dimers further assemble into a pen-
tamer with other subunits. Those unassembled or misfolded sub-
units, including both wild-type and mutant subunits, are subject to
ubiquitin-proteasome system degradation. Only correctly as-
sembled receptors can traffic beyond the ER to the trans-Golgi and
endosomes to finally reach the cell membrane and synapses. Only
those subunits that reach the membrane surface and synapses can
mediate inhibition by conducting chloride ions, while those subunits
residing in intracellular compartments have no function (Figure 1).

The GABAA receptor subunits form a superfamily that con-
tains 19 subunits. Mutations or variants in several GABAA subunits
have been associated with epilepsies. These subunit genes include
GABRA1, GABRB1, GABRB2, GABRB3, GABRG2, and GABRD.14,15 Most
of these mutations have autosomal dominant inheritance; there-
fore, the patients are heterozygous for the mutation. The seizures
and epilepsy syndromes resulting from mutations in these GABAA

receptor subunit genes include multiple GE syndromes and vary
in severity. They include pure febrile seizures16 and epilepsy
syndromes, such as CAE17, and mixed afebrile seizures and febrile
seizures (CAE and febrile seizures and GEFS+, including Dravet syn-
drome) and afebrile seizures.18-23 The epilepsy mutations include
missense, nonsense, insertion, or deletion mutations resulting in
frameshift mutations in coding regions, as well as mutations in
noncoding regions.

GABRG2 Subunit and Its Epilepsy Mutations
Among all the GABR genes, mutations in GABRG2 have been most
frequently associated with GEs, and 11 epilepsy mutations in GABRG2
have been identified to date (Figure 2). It is not surprising that
GABRG2 is an epilepsy gene given its critical role in GABAA receptor
trafficking and its importance for formation of high-conductance
GABAA receptor channels. The GABAA receptors mediate most fast
inhibitory neurotransmission. The γ2 subunit encoded by GABRG2
is required for postsynaptic GABAA receptor clustering.24

Although the γ2 subunit is not required for pentameric receptor
assembly,25 it has been demonstrated that γ2 subunits are favored
over β subunits in receptor assembly and that incorporation of γ2
subunits into receptors signif icantly increases channel
conductance.26 In addition, γ2 subunit–containing receptor chan-
nels adopt unique properties by conferring sensitivity to benzodi-
azepines and insensitivity to zinc.27 Homozygous Gabrg2 knock-
out mice are not viable, while heterozygous Gabrg2 knockout mice
are viable, display anxiety,28 and are reported to have absence
seizures in some genetic backgrounds.29 Two Gabrg2 knockin mice
(R82Q30 and Q390X31) displayed behavioral seizures, further
validating the critical role of the subunit in epilepsy.

Multiple mutations in GABRG2 have been associated with epi-
lepsy syndromes with different severities (Figure 3). Some muta-
tions in GABRG2 are associated with simple febrile seizures or CAE,
with good outcomes, while others are associated with the more se-
vere GEFS+ phenotype, which continues into adulthood. Still other
mutations have even worse phenotypes like Dravet syndrome, with
intractable seizures and cognitive decline. These mutations occur
in different locations, including the N-terminus, transmembrane do-
main, intracellular and extracellular loops, and splice donor sites.
Mutations in GABRG2 include missense, nonsense, and deletion or
frameshift mutations. Each mutation results in different molecular
defects by different molecular mechanisms as detailed below (Table).
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GABRG2 Missense Mutations and Genetic Epilepsy
There are 5 missense mutations in GABRG2 that have been associ-
ated with a genetic epilepsy. There mutations include N79S, R82Q,
P83S, R177G, and K328M.19,20,32,41 Four of the 5 missense muta-
tions (N79S, R82Q, P83S, and R177G) are located in the extracellular

N-terminus, and one (K328M) is located in the middle of the short
transmembrane 2–transmembrane 3 extracellular linker. The N79S
mutation was observed in a single patient with GEFS+. The R82Q
and P83S mutations were identified in families with GEFS+. The
R177G mutation is associated with CAE, febrile seizures, and GEFS+.

Figure 1. Schematic Representation Showing the γ-Aminobutyric Acid (GABAA) Receptor Subunit Biogenesis,
Assembly, and Trafficking
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Mutant

GABAA
Shown is the normal trafficking route
of GABAA receptors. Only those
receptors that reach the cell surface
and synapses can conduct chloride
ions and have function, while those
subunits residing in intracellular
compartments have no function.
The mutant subunits (mutant)
resulting from missense or nonsense
GABRG2 mutations are subject to
nonsense-mediated messenger RNA
decay or endoplasmic
reticulum–associated degradation.
Therefore, the mutant subunits are
unlikely to be present on the cell
surface and in synapses, as are
wild-type receptors. The arrows show
the targeted subcellular locations of
wild-type or mutant subunits.

Figure 2. Schematic Representation of an γ-Aminobutyric Acid (GABAA) Receptor Subunit Topology
Showing the Location of the Epilepsy Mutations in GABRG2 Identified by Different Groups to Date
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GABRG2 mutations are associated
with seizures and epilepsy
syndromes. Shown are the γ2 subunit
protein and the mutations identified
in GABRG2 to date. CAE indicates
childhood absence epilepsy;
FS, febrile seizures;
GEFS+, generalized epilepsy with
febrile seizures plus;
GTCS, generalized tonic-clonic
seizures; TM, transmembrane; and
SMEI, severe myoclonic epilepsy in
infancy.
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All of these missense mutations have been characterized, and
the 4 N-terminus mutations all reduced receptor surface expres-
sion. The R82Q and P83S mutations resulted in approximately a 60%
to 90% reduction of the γ2 subunit on the surface, while the N79S
mutation resulted in a small reduction (12%) of the γ2 subunit on
the surface.32 The R177G mutation resulted in approximately a 60%
reduction of the surface protein when the mutant subunit was ex-
pressed homozygously but approximately a 90% reduction when
expressed heterozygously.34 This finding suggests that the mutant
subunit was at a disadvantage for receptor assembly in the pres-
ence of the wild-type counterpart. The total protein was reduced
with the R82Q and P83S mutations but not with the N79S and R177G
mutations. However, the mutant γ2(R177G) subunit had arrested

glycosylation and was retained inside the ER, which is not func-
tional. The K328M is the only mutation that altered channel cur-
rent kinetic properties, by shortening the channel open time, with-
out altering receptor trafficking, thus reducing synaptic inhibition.42

GABRG2 Nonsense Mutations and Genetic Epilepsy
There are 4 nonsense mutations in GABRG2 that have been associ-
ated with genetic epilepsy, namely, Q40X, R136X, Q390X, and
W429X. The Q40X mutation was observed in twin sisters with
Dravet syndrome.35,43,44 The R136X mutation is associated with
GEFS+ and other extended phenotypes like eye myoclonia and
autistic features.36 The Q390X mutation is associated with GEFS+,
and the proband was diagnosed as having Dravet syndrome.18 The

Figure 3. Schematic Representation Showing GABRG2 Mutations and the Severity of Epilepsy Syndromes
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Mutations in GABRG2 are associated with a spectrum of epilepsy syndromes, with different clinical severities.A

Shown are a decrease in γ2 subunit–containing receptors and an increase in αβ receptors in mild epilepsy, as well as further
reduction of the γ2 subunit–containing receptors with or without an increase in αβ receptors in severe epilepsies.

B

Various clinical phenotypes of
seizures and epilepsy syndromes are
associated with GABRG2 mutations.
CAE indicates childhood absence
epilepsy; FS, febrile seizures; and
GEFS+, generalized epilepsy with
febrile seizures plus.

Table. GABRG2 Subunit Mutations and Variants Associated With Genetic Epilepsies and Their Postulated
Molecular Defectsa

GABRG2 Mutation or
Variant, Locus 5q34 Postulated Mechanisms Phenotypes Source
Missense mutations

N79S Impaired oligomerization? GEFS+ Huang et al,32 2014

R82Q Impaired oligomerization, ER retention FS, CAE Wallace et al,19 2001

P83S Impaired oligomerization, ER retention FS, CAE Lachance-Touchette
et al,33 2011

R177G Impaired oligomerization, ER retention FS Todd et al,34 2014

K328M Gating defect FS, GEFS+ Baulac et al,20 2001

Nonsense mutations

Q40X NMD, ERAD, ER retention DS Huang et al,35 2012

R136X NMD, ERAD FS, CAE Johnston et al,36 2014

Q390X ER retention, dominant negative effect GEFS+, DS Kang et al,37 2009

W429X ER retention, dominant negative effect? GEFS+ Kang et al,38 2013

Splice-site mutation

IVS6 + 2T->G NMD, ERAD CAE, FS Tian and Macdonald,39

2012
Deletion mutation

S443delC ERAD, ER retention? GEFS+ Tian et al,40 2013

Abbreviations: CAE, childhood
absence epilepsy; DS, Dravet
syndrome; ER, endoplasmic
reticulum; ERAD, endoplasmic
reticulum–associated degradation;
FS, febrile seizures;
GEFS+, generalized epilepsy with
febrile seizures plus;
NMD, nonsense-mediated
mRNA decay.
a All of these mutations reduced

channel function.
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W429X mutation was observed in a Chinese family with febrile sei-
zures and GEFS+.21 Based on in vitro studies, none of the γ2 sub-
units with nonsense GABRG2 mutations have any surface
expression.38 However, each mutation results in different amounts
of total γ2 subunit protein levels. Compared with the wild-type γ2
subunit, the mutant γ2(Q40X) subunit protein was undetectable,
mutant γ2(R136X) and γ2(W429X) subunit protein was reduced, and
γ2(Q390X) subunit protein was increased and formed high-
molecular-mass protein complexes. All the truncated γ2 subunit pro-
teins were prone to form high-molecular-mass protein complexes
but to different extents.38

GABRG2 Splice Donor Site Mutation and Genetic Epilepsy
Only 1 splice donor site mutation in GABRG2 has been associated with
epilepsy to date. The GABRG2 (IVS6 + 2T→G) splice donor site mu-
tation was observed in a small pedigree with CAE and febrile
seizures.23 This intronic splice donor site mutation has been pre-
dicted to cause skipping of exon 6 and creation of an exon 5–exon 7
splice junction and generation of a premature translation termina-
tion codon (PTC). Intron splice-site mutation is another kind of
PTC-generating mutation, in addition to nonsense and deletion or
insertion frameshift mutations. Wild-type and mutant GABRG2
messenger RNA (mRNA) splicing patterns were determined in both
bacterial artificial chromosome–transfected HEK293T cells and
transgenic mouse brain, and the mutation in both abolished intron
6 splicing at the donor site, activated a cryptic splice site, gener-
ated partial intron 6 retention, and produced a frameshift in exon 7
that created a PTC.23 The resultant mutant mRNA was either de-
graded partially by nonsense-mediated mRNA decay or translated
to a stable, truncated subunit (the γ2-PTC subunit) containing the
first 6 GABRG2 exons and a novel frameshifted 29 amino acids in the
C-terminus tail. The γ2-PTC subunit was homologous to the mol-
lusk acetylcholine-binding protein but was not secreted from cells.
It was retained in the ER and not expressed on the surface mem-
brane, but it did oligomerize with α1 and β2 subunits. These results
suggested that the GABRG2 mutation IVS6 + 2T→G decreased sur-
face αβγ2 receptor levels, thus reducing GABAergic inhibition.39

GABRG2 Deletion Mutation
There is 1 deletion mutation in GABRG2 that has been identified in
epilepsy. A novel c.1329delC in GABRG2 was observed in a family
with mild generalized epilepsy and febrile seizures.40 The
c.1329delC mutation resulted in a subunit γ2S(S443delC) with a
modified and elongated C-terminus that is different from that of
the wild-type γ2 subunit. The mutation results in a subunit pre-
dicted to lose the last 24 C-terminus amino acids and gain 50
amino acids different from those of the natural variant, with con-
sequent lower hydrophobicity of the C-terminus. This deletion
mutation is the first GABAA receptor epilepsy mutation predicted
to abolish the natural stop codon and produce a stop codon in the
3′ untranslated region, thus producing an extended subunit pep-
tide. The subunit mRNA should be stable and should produce γ2
subunits with a disrupted fourth transmembrane domain and an
extended C-terminus tail. The mutant γ2 subunit was not present
at the cell membrane but was retained inside intracellular com-
partments. The total mutant γ2 subunit protein was reduced, sug-
gesting that the functional GABAA receptor on the cell surface and
synapses is reduced.39

Loss or Reduction of Cell Surface Expression
of the Mutant Subunit Protein, a Common Abnormality
for GABRG2 Mutations
We have demonstrated that loss of γ2 subunit protein on the cell
surface is a common defect for all the missense, nonsense, and other
PTC-generating GABRG2 mutations. The loss-of-function muta-
tions include all the nonsense, deletion, and splice donor site mu-
tations. The mutations that produce severely impaired subunit
surface expression include R82Q, P83S, and R177G, while the N79S
mutation has mildly impaired surface expression.32 The mutant γ2
subunits are retained inside the ER, which is where the immature
GABAA receptor subunit resides once synthesized. With glycosyla-
tion studies, we have identified all the mutant subunits that have
arrested glycosylation. When coexpressed with the wild-type
partnering α1 and β2 subunits, the mutant subunits adopt only ER
glycosylation that is the core glycosylation for the immature sub-
units, while the wild-type γ2 subunits have mature glycosylation,
suggesting subunit trafficking beyond the trans-Golgi to the cell
surface. The γ2 subunits with only core glycosylation are retained
in the ER, suggesting that they are nonfunctional.

Altered Channel Kinetics, a Rare Molecular Defect
for GABRG2 Mutations
The only GABRG2 mutation that results in altered channel kinetics
is K328M. The mutation is located in the TM2-TM3 extracellular do-
main and produces functional consequences that are consistent with
decreased neuronal inhibition, including a faster deactivation rate
for α1β3γ2L(K328M) GABAA receptors (which predicts shorter-
duration inhibitory postsynaptic currents). Significantly decreased
mean open times for α1β3γ2L(K328M) GABAA receptor single chan-
nels were recorded, consistent with the accelerated deactivation,
because channels would spend less time in the open state for any
given opening before eventually unbinding GABA. Channels that
were open at the end of the GABA pulse would close faster than wild-
type channels.42 Accelerated decay of synaptic currents produced
by α1β3γ2L(K328M) GABAA receptors has also been observed in
neuronal preparations.45

GABRG2 Mutations Causing Simple Loss of GABRG2
Subunit Function
We have compared the simple loss of one-half of GABRG2 and the
mixed wild-type and mutant condition in HEK293T cells, which mim-
ics the condition occurring with heterozygous patients. We found
that the surface γ2 subunit expression level with a one-half gene dose
is more than half (65%-70%) of the wild-type γ2 subunit level, with
a full gene dose when the γ2 subunits were coexpressed with α and
β subunits. Although the total γ2 subunit protein level in the one-
half gene dose condition was indeed half of the level of the wild-
type full gene dose condition, current amplitude of α1β2γ2S(+/−)

receptors is larger than the current amplitude produced by the loss-
of-function γ2 subunit mutation containing α1β2γ2S mixed or
“heterozygous” receptors.37 This finding suggests favorable assem-
bly or more efficient trafficking of the γ2 subunit in the one-half gene
dose condition than the mixed or heterozygous γ2/γ2(Q390X) con-
dition. This result could be due to the greater availability of the part-
nering subunits like α and β subunits or the chaperones in the one-
half gene dose condition compared with the crowded mixed or
heterozygous γ2/γ2(Q390X) condition.31,37
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There are some GABRG2 mutations that may result in a simple
loss of function or almost a simple loss-of-function condition. For ex-
ample, we have demonstrated that there was no dominant negative
suppression by γ2(R136X) subunits on the wild-type partnering sub-
units like the α1 subunit.36 These mutations often result in a mutant
subunit protein that is readily degraded without much interference
of the biogenesis and function of the remaining wild-type subunits.
Alternatively, nonsense or PTC-generating mutations could result in
nonsense-mediated mRNA decay that eliminates the mutant allele at
the mRNA level if the PTCs occur in an early exon and activate non-
sense-mediated mRNA decay. The functional consequence of these
mutations would be similar to the Gabrg2+/− knockout condition, which
may represent a simple haploinsufficiency condition.

GABRG2 Mutations Causing Dominant Negative Suppression
of the Remaining GABAA Receptor Function
Some GABRG2 mutations generate mutant γ2 subunits that cause
dominant negative suppression of the wild-type GABAA receptors,
while other mutations cause only simple haploinsufficiency. Still other
GABRG2 mutations may cause mild dominant negative suppres-
sion of the wild-type subunits. Using the nonsense GABRG2 muta-
tions as an example, despite loss of function for all the truncated sub-
units, we have demonstrated that R136X has no dominant negative
effect on the remaining α1β2 subunits and that Q390X has a strong
dominant negative suppression of the wild-type subunits, while
W429X has a mild dominant negative effect on the remaining α1β2
subunits.38 Therefore, the degree of dominant negative suppres-
sion of each mutant γ2 subunit varies likely depends on the specific
structural disturbance of each specific mutation.

Trafficking Deficient Mutant Proteins, Subject to ER-
Associated Degradation But With Different Rates
The differential dominant negative suppression is likely correlated
with the degradation rate for each protein, which is likely true for
both missense and nonsense GABRG2 mutations. A detailed com-
parison of γ2 subunit protein degradation with the radiolabeled
pulse-chase assay has been done with GABRG2 nonsense muta-
tions. For PTC-generating mutations, because nonsense-mediated
mRNA decay is rarely complete, the remaining mutant transcripts
should be translated and generate mutant protein. Similar to mRNA
surveillance, at the protein level trafficking deficient mutant sub-
units are subject to ER protein quality control, leading to ER reten-
tion or ER-associated degradation (ERAD) after translation. Previ-
ous studies have demonstrated that truncated mutant proteins
translated from mutant mRNAs that escape nonsense-mediated
mRNA decay are often trafficking deficient, misfolded, and misrouted
and consequently are subject to ERAD.46 The mechanisms by
which ERAD targets misfolded proteins include the ubiquitin-
proteasome system47 and the autophagy or lysosome pathway.48

However, the degradation rate of each subunit and of each subunit
harboring different mutations may be different. The relative stabil-
ity of each mutant subunit may vary with the stability of different
subtypes of subunits and with the nature and location of the muta-
tion. We have compared the protein metabolism of 3 nonsense
mutations in the transmembrane 3–transmembrane 4 and
C-terminus of the subunit. We have identified that the mutation with
the most accumulation had the slowest degradation rate, while the
mutation with the least accumulation at the steady-state level had

the fastest degradation rate.38 A mutation that has mild dominant
negative suppression on the wild-type subunits had slightly
enhanced degradation compared with the wild-type subunits.38

GABRG2 Mutations Causing Gain of Cellular Toxicity
The cellular toxicity resulting from ion channel epilepsy gene muta-
tions has never been addressed, to our knowledge. It is likely that most
of these ion channel gene mutations would not cause cellular toxic-
ity. The epilepsy syndromes associated with these gene mutations may
respond well to the anticonvulsant drugs by modulating neurotrans-
mission. However, patients with mutations like GABRG2(Q390X) that
result in a mutant protein with slow degradation and protein aggre-
gation would not be easily treated with a pure anticonvulsant drug.
The misfolded and aggregated protein would lead to ER stress. It is
established that sustained ER stress would cause neuronal death. We
have demonstrated that the γ2 subunit protein progressively accu-
mulated inside neurons and formed protein aggregates, which
costained with active caspase 3 in older Gabrg2+/Q390X mice.31

Although we could not distinguish the wild-type and the mutant γ2
(Q390X) subunit in the mutant mice at the protein level, it is likely that
the accumulation was due to the mutant γ2 subunit because the γ2
subunit protein expression in the neurons was almost identical in the
young and older wild-type mice. This findings suggests that the
mutant γ2(Q390X) subunit protein could cause neuronal death.

Phenotype Differences Between Gabrg2+/Q390X Knockin
and Gabrg2+/− Knockout Mice
The Gabrg2+/− knockout mouse has been available for a long
time.49 Homozygous knockout mice are not viable, suggesting a
critical role of GABRG2 for survival. The heterozygous knockout
mice were reported to have increased anxiety28 and absence
seizures in DBA/2J mice that have seizure-prone genetic
backgrounds.29 However, no spontaneous generalized tonic-
clonic seizures were reported in the Gabrg2+/− knockout mice. In
contrast, in the heterozygous Gabrg2+/Q390X knockin mice that
carry the nonsense mutation GABRG2(Q390X), the heterozygous
mice in C57/BL/6J, the most seizure-resistant mouse background,
had spontaneous generalized tonic-clonic seizures and increased
mortality, likely to be seizure-related sudden unexpected death in
epilepsy.31 This finding indicates that phenotype differences exist
between the 2 mouse lines carrying 2 different loss-of-function
mutations in GABRG2, which is consistent with the observation
that GABAA receptor function is more reduced in the mixed γ2/γ2
(Q390X) condition than in the simple one-half gene dose
condition.37

Epilepsy Phenotypic Heterogeneity of GABRG2 Mutations
Mutations in GABRG2 have been associated with a spectrum of
seizures and generalized epilepsy syndromes, with phenotypes that
range from simple febrile seizures to childhood absence seizures
to GEFS+ or Dravet syndrome. These mutations are identified in rare
families and in sporadic cases with de novo mutations. These mu-
tations include missense, nonsense, and other PTC-generating
mutations like deletion and splice-site mutations. Phenotypes as-
sociated with missense mutations in GABRG2 are mild and include
familial CAE and febrile seizures.16,19,20 Nonsense mutations in
GABRG2 are associated with more severe phenotypes, and the
phenotypes range from GEFS+ to Dravet syndrome.
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The basis for the more severe epilepsy phenotypes with non-
sense GABRG2 mutations is likely related to the extent of receptor
function reduction and the metabolism of the mutant γ2 subunit pro-
tein. Among all the loss-of-function mutations generated by differ-
ent nonsense GABRG2 mutations, the GABRG2(Q390X) mutation
that generates more mutant protein is associated with a more
severe epilepsy phenotype. The production of more steady-state
mutant γ2(Q390X) subunit protein is due to the slow degradation
rate of the mutant protein. The mutant γ2(Q390X) subunit protein
is stable, accumulated and aggregated inside cells, and had
dominant negative suppression, which would further reduce the
function of the remaining GABAA receptors and thus result in a more
severe epilepsy phenotype.

Clinical Implications
The recent findings of GABRG2 epilepsy mutations provided novel
molecular targets for potential new therapeutic strategies for treat-
ment of genetic epilepsies. Conventional antiepileptic drugs work
primarily by directly or indirectly regulating neurotransmission. Based
on the findings from GABRG2 mutations, potential therapeutic

approaches would include increasing wild-type or mutant GABAA

receptor channel function or decreasing disturbance of the cellular
signaling by the presence of the mutant GABAA receptor subunit pro-
tein. The drug to enhance GABAA receptor function would be effec-
tive to compensate the lost or impaired GABAA channel function.
For those GABRG2 mutations that cause dominant negative sup-
pression and cellular toxicity, removing the nonfunctional mutant
protein would increase the remaining wild-type GABAA receptor
function and decrease the nonfunctional mutant protein and
cellular toxicity.

Conclusions
In summary, recent studies suggest that the pathogenesis of
GABRG2 mutations is likely to be due to a combination of reduction
of channel function and disturbance of cellular homeostasis due to
the presence of mutant protein. Therefore, a combined therapeutic
strategy to enhance the wild-type GABAA receptor channel function
and eliminate the production of mutant protein using RNA interfer-
ence targeting of the mutant transcripts or small molecules to pro-
mote the disposal of the mutant protein might be a useful approach.
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