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Abstract
PTEN is a lipid and protein phosphatase that regulates cell 
growth and survival. Mutations to PTEN are highly penetrant 
for autism spectrum disorder (ASD). Here, we briefly review 
the evidence linking PTEN mutations to ASD and the mouse 
models that have been used to study the role of PTEN in neu-
rodevelopment. We then focus on the cellular phenotypes 
associated with PTEN loss in neurons, highlighting the role 
PTEN plays in neuronal proliferation, migration, survival, 
morphology, and plasticity. © 2020 S. Karger AG, Basel

PTEN Mutations and ASD

Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder involving impaired social behavior, sen-
sory hypersensitivity, repetitive behavior, and restricted 
interests. In the USA, 1 in 59 children receive an ASD di-

agnosis [1]. ASD is highly heritable, with genetics ac-
counting for about half of ASD risk [2]. Approximately 
50% of cases are expected to arise from the cumulative ef-
fects of common alleles each conferring a small degree of 
risk [3]. Copy number variations or single-gene mutations 
contribute to an estimated 10% of total ASD cases [4] and 
a larger proportion of simplex cases [5]. According to one 
estimate, as many as 30% of ASD cases may have a detect-
able genetic etiology [6]. Although they each account for 
only a small fraction of cases, single-gene mutations pro-
vide a useful starting point for dissecting the developmen-
tal etiology of ASD, since biological functions relevant to 
ASD etiology may be similarly disrupted in both idiopath-
ic and syndromic cases. One gene associated with syn-
dromic ASD risk is the phosphatase and tensin homolog 
gene (PTEN). The PTEN protein is part of a signaling net-
work that contains multiple ASD-associated gene prod-
ucts and represents a potentially common etiological 
mechanism for ASD and related neurodevelopmental dis-
orders [7–9]. Here, we briefly review the PTEN protein 
and the phenotypes associated with PTEN loss of function 
in humans, before focusing on the structural and func-
tional consequences of PTEN loss in vivo in animal mod-
els and what these tell us about PTEN function in neurons.
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PTEN was originally discovered due to its role as an 
oncogene [10, 11], and was quickly identified as the pri-
mary cause of the tumor syndromes Cowden syndrome, 
Bannayan-Riley-Ruvalcaba syndrome, and Lhermitte-
Duclos disease, collectively referred to as PTEN hamar-
toma tumor syndromes (PHTS; OMIM #158350) [12–
14]. Numerous cases were soon reported of individuals 
with both PHTS and ASD confirmed to have PTEN mu-
tations [13, 15, 16], suggesting that PTEN is a risk factor 
for ASD. PTEN mutations have also been found in indi-
viduals with macrocephaly and ASD but lacking a PHTS 
diagnosis [17–23], indicating incomplete penetrance for 
both PHTS and ASD. Among individuals with both mac-
rocephaly and ASD, PTEN mutations may be relatively 
common. The estimated frequency of mutations to pro-
tein-coding portions of PTEN in such patients ranges 
from < 2 to 20%. Most of the variation is due to the sam-
pling criteria; studies using a more restrictive definition 
of macrocephaly tend to find a higher mutation rate [17, 
19–21, 23, 24]. Mutations to other members of the PI3K-
AKT-mTOR pathway have also been found in cases of 
comorbid macrocephaly and ASD [25]. Multiple discov-
eries of de novo PTEN mutations confirm it is a risk gene 
for ASD [26–30]. Although the penetrance for ASD in 
humans with PTEN mutations is unknown, a retrospec-
tive chart review of patients with known PTEN mutations 
found macrocephaly in 66% and ASD diagnoses in 50%, 
with high frequencies of dermatological, gastrointestinal, 
and thyroid problems as well [31].

PTEN Biology

PTEN is a ubiquitously expressed and evolutionarily 
conserved dual-specificity protein and lipid phosphatase. 
In its best-characterized role as a lipid phosphatase, PTEN 

catalyzes the removal of the 3-phosphate from phos
phatidylinositol (3,4,5)-phosphate (PIP3), generating 
PI(4,5)P2 and directly antagonizing the activity of the 
class I PI3 kinases (PI3K) [32–35]. PIP3 recruits and acti-
vates a broad variety of effectors by their Pleckstrin ho-
mology domains, regulating a broad spectrum of biolog-
ical functions including growth, survival, gene transcrip-
tion, protein translation, cytoskeletal organization, and 
membrane trafficking [32]. The best characterized of 
these effectors is AKT, which in turn regulates signaling 
through mTOR and GSK3β. Meanwhile, PTEN’s protein 
phosphatase activity targets a number of substrates, in-
cluding MAPK signaling, which PTEN inhibits [36, 37]. 
PTEN consists of a phosphatase domain (residues 7–185), 
a C2 domain, which mediates membrane binding (186–
351), and a 24-amino acid c-terminus tail (Fig. 1) [38]. An 
alternate transcript produced from a noncanonical trans-
lation initiation site produces small amounts of PTEN-L, 
which contains an additional 173 amino acids on its N-
terminus [39]. PTEN-L is both secreted from the cell [39] 
and distributed differently within the cell, localizing pref-
erentially away from the nucleus and toward the mito-
chondria [40].

PTEN is located throughout the cell, where regulation 
of its location is essential for its function. PTEN’s lipid sub-
strate PIP3 is a membrane-bound phospholipid. Therefore, 
membrane-associated PTEN has the most catalytic activity 
[41]. PTEN localization to the nucleus contributes to its 
tumor suppressor activity [42] and its regulation of cell 
growth [43] while promoting cell survival [44]. Whether 
PTEN can access PIP3 in the nuclear matrix to regulate 
mTOR signaling is an open question as there has been ev-
idence both for [43] and against this idea [45]. Monoubiq-
uitination, SUMOylation, and protein-protein interac-
tions increase the rate of PTEN translocation into the nu-
cleus [42, 46, 47]. Impairing the ability of PTEN to localize 
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Fig. 1. Major structural features of PTEN. PTEN has an N-terminal PIP2-binding domain (PBD) and phospha-
tase domain (amino acids 7–185), containing the catalytic P-loop (123–130). A C2 domain (186–351) contains a 
CBR3 loop from 260–269, which mediates membrane binding. An unstructured C-terminal tail contains mul-
tiple phosphorylation sites which inhibit catalytic activity and membrane binding. The terminus of this tail con-
tains a PDZ-binding motif (based on [33] and [58]).
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to the nucleus and associate with centromeres leads to an 
increased frequency of double-strand breaks in DNA [46, 
48]. The tumor suppressor properties of nuclear PTEN do 
not depend on its phosphatase activity, but rather on its 
ability to associate with the anaphase-promoting complex 
[49]. However, nuclear PTEN does dephosphorylate PIP3 
in the nucleus to suppress neuron growth [43]. PTEN-L, 
the long form of PTEN, is preferentially distributed away 
from the nucleus [40]. The implications of nuclear PTEN 
for ASD remain an area of interest. 

PTEN activity is dynamically regulated by phosphory-
lation. The kinase CK2 phosphorylates a cluster of resi-
dues on PTEN’s C-tail; phosphorylated PTEN is degrad-
ed slower by proteasome [50]. In in vitro assays, the mem-
brane affinity of PTEN depends on both the C2 domain 
and an N-terminal PIP2-binding domain [41]. Phosphor-
ylation of the C-tail prevents membrane binding [41]. 
The phosphorylated residues on the C-tail bind to the N-
terminal PIP2-binding domain, competitively blocking 
the sites of interaction with membrane-bound PIP2 and 
the C2 domain [51–53]. The phosphorylation-dependent 
regulation of the subcellular localization of PTEN is dy-
namically regulated during cellular growth. For example, 
in axonal growth cones, most PTEN is phosphorylated 
and colocalizes with microtubules instead of the mem-
brane [54]. Chemorepellent signals lead to the dephos-
phorylation of PTEN’s C-tail, increasing its affinity for 
the membrane, where it opposes outgrowth and pro-
motes collapse by dephosphorylating PIP3 [55]. Mean-
while, downstream signaling of growth factor receptors 
activates CK2 to phosphorylate PTEN, thereby prevent-
ing interactions with the membrane [56].

Continued collection of exome and genome sequences 
from ASD cohorts, PHTS patients, and tumors has led to 
an expansive library of PTEN mutations associated with 
pathology. In ASD, tumor syndromes, and tumor tissue, 
mutations can impact PTEN function in a variety of ways. 
Mutations to an upstream regulatory element can damp-
en translation, causing PHTS [57], while point mutations 
associated with both ASD and cancer lose their function 
through depressed catalytic activity, instability, and al-
tered subcellular localization [43]. There is a significant 
overlap between mutations associated with cancer and 
those associated with ASD [58]. However, it has been pro-
posed that mutations severely affecting catalytic activity 
have a stronger association with PHTS and cancer, while 
mutations associated with PHTS and ASD are more like-
ly to produce subtler alterations to stability or subcellular 
localization. For example, a comparison of the lipid phos-
phatase activity of several variants found in PHTS and 

ASD patients found that while a majority of PHTS-asso-
ciated variants were completely inactive, most ASD-asso-
ciated variants retained some lipid phosphatase activity 
[59]. In another study, a group of PTEN variants found 
only in ASD were stable and all, at least partially, rescued 
the morphology of PTEN-knockout neurons, while a 
group of variants associated with particularly severe 
PHTS completely lacked the ability to suppress AKT 
phosphorylation, suggesting a complete loss of function 
[60]. In a saturation mutagenesis approach in yeast, mu-
tations implicated in PHTS and patient tumors had a 
greater impact on fitness than mutations implicated only 
in ASD, and they were more likely to target the catalytic 
pocket [61]. Collectively, these results suggest that muta-
tions causing a complete loss of function are more likely 
to result in PHTS, while less severe mutations may con-
tribute to ASD pathology despite retaining some func-
tion. However, it is notable that the severity and manifes-
tations of PHTS vary broadly across the patient popula-
tion, with cognitive function in individuals with PHTS 
ranging from normal to severely disrupted [62, 63]. 
Therefore, the likelihood of developing cancer or ASD in 
PHTS may depend on factors such as environmental in-
sult of a permissive genetic background, and these factors 
may be distinct for the two conditions.

PTEN function is important in neurodevelopment. 
The most common clinical finding in humans with mu-
tated PTEN is macrocephaly [31]. The increased head cir-
cumference of patients with PTEN mutations is driven by 
enlargement of the cerebellum, ventricles, and white mat-
ter, although cortex thickness remains normal [64]. Focal 
abnormalities in white matter are common [65], as are 
abnormalities of the vasculature [65–67]. It has been pro-
posed that these white matter lesions could contribute to 
comorbid psychiatric diagnoses such as bipolar disorder, 
psychosis, obsessive compulsive disorder, general anxiety 
disorder, and developmental delay [68]. Hemimegalen-
cephaly and focal cortical dysplasias have also been ob-
served in patients with PTEN mutations [69, 70], and in 
patients with mutations elsewhere in the PI3K-AKT-
mTOR pathway [69]. The cognitive outcomes of patients 
with PTEN mutations are highly variable. About half 
have an ASD diagnosis, while about one-third have diag-
noses of developmental delay or intellectual disability, 
and about 1 in 5 have both ASD and a comorbid cognitive 
disorder [31]. A battery of cognitive function tests admin-
istered to patients with Cowden syndrome found that 
many individuals possessed normal intelligence, while 
executive and motor functions were the most likely cat-
egories to be impaired [63].
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Mouse Models of PTEN Loss of Function

The high penetrance of PTEN mutations for ASD 
made PTEN a promising candidate to test in animal mod-
els. In the mouse, germline PTEN knockout is embryon-
ic lethal [71]. Germline heterozygous and conditional 
knockout mice display altered neurodevelopment and 
ASD-associated behaviors, making them a promising 
model system for studying the biological basis of PTEN-
associated ASD. Because PTEN mutations in humans are 
heterozygous, the most genetically similar animal model 
is mice that are germline heterozygotes. Like humans 
with PTEN mutations, PTEN heterozygous mice have an 
enlarged brain. In the mice, this is primarily due to in-
creased proliferation of glia, although enlarged neuronal 
cell bodies also contribute [72]. These mice exhibit re-
duced social preference, social interaction time, and ag-
gression, and an increased frequency of repetitive behav-
iors [72, 73]. The m3m4 mutant strain, which carries 5 
germline point mutations in PTEN’s C2 domain, affect-
ing subcellular localization, also has an enlarged brain 
with more glia. In this mouse, males are hypersocial, and 
both sexes have motor deficits [74]. Neuron-specific con-
ditional PTEN knockout recapitulates many of the fea-
tures observed in humans with PTEN mutations. In a 
GFAP-Cre × Ptenflx/flx line, in which PTEN is knocked out 
early in the development of most cerebellar, hippocam-
pal, and cortical neurons, the mice have larger brains with 
overgrown cerebella and enlarged ventricles, mirroring 
the characteristics of human Lhermitte-Duclos disease 
[75, 76]. In a different GFAP-Cre × Ptenflx/flx line in which 
PTEN expression is also lost in glia, axons are hypermy-
elinated [77]. The NSE-Cre × Ptenflx/flx mouse loses PTEN 
expression in a subset of forebrain neurons between birth 
and 2 weeks of age, leading to an enlarged brain, reduced 
social preference, impaired sensorimotor gating, learning 
deficits, and epilepsy [78, 79]. Therefore, PTEN mutant 
and neuron-specific conditional knockout mice recapitu-
late many of the symptoms associated with PTEN muta-
tions in humans, including macrocephaly and behavior 
alterations that mimic the core symptoms of ASD. 

Transgenic mouse lines in which PTEN loss is re-
stricted to specific populations have provided insight to 
the contributions of specific circuits to altered behavior 
in PTEN knockout mice. Consistent with the established 
role of the hippocampus in the etiology of epilepsy, PTEN 
loss in the dentate gyrus of the hippocampus is sufficient 
to cause recurrent seizures [80, 81]. Social behaviors are 
complex and can be influenced by brain circuits that pro-
cess reward, fear, motivation, and higher-order cognitive 

tasks. It is therefore perhaps unsurprising that PTEN de-
letions in a number of circuits can affect social behavior. 
In addition to the previously mentioned transgenic lines 
in which PTEN is lost in multiple brain regions, social 
behavior is impacted by restricted PTEN loss in midbrain 
dopaminergic neurons in a DAT-Cre driver line, in cer-
ebellar Purkinje neurons in an L7-Cre driver line, and in 
cortical interneurons derived from the medial ganglion-
ic eminence (MGE) in an Nkx2.1-Cre driver line [72, 82, 
83]. It has been found that inhibiting hyperactive projec-
tions from the medial prefrontal cortex to the basolat-
eral amygdala rescues the reduced social preference of 
PTEN haploinsufficient mice [84]. However, not all cir-
cuits implicated in social behavior mediate the altered 
behaviors associated with PTEN loss, since PTEN knock-
out in oxytocinergic neurons results in behavior similar 
to that of wild-type mice except for increased open-field 
activity [85]. A selection of PTEN conditional knockout 
lines and the associated behavioral alterations are sum-
marized in Table 1. Together, these studies demonstrate 
that despite the effects of PTEN loss on the functions of 
other cell types in the brain, neuronal PTEN loss can 
drive ASD-associated behavior in a circuit-specific man-
ner.

Proliferation, Differentiation, and Migration

PTEN is an important regulator of development from 
the earliest stages, regulating cell proliferation and cell 
fate. Mice with a homozygous PTEN deletion die before 
embryonic day 7.5 because of a failure for tissue to appro-
priately differentiate into endoderm, mesoderm, and ec-
toderm [71]. Mice lacking only 1 PTEN allele are viable 
and have increased cell proliferation during brain devel-
opment. This extra cell proliferation primarily results in 
the excess production of glial cells as a result of increased 
signaling through GSK3β [86]. Brain overgrowth is evi-
dent starting at birth. The increased number of cortical 
neurons, first evident at E15.5, normalizes by adulthood, 
potentially due to increased postnatal apoptosis [86]. In 
adult mice heterozygous for PTEN, there are increases in 
the number of astrocytes, microglia, and oligodendro-
cytes [86]. Increases in progenitor proliferation and cell 
fate bias toward astrocytes and oligodendrocytes are also 
observed in a the m3m4 homozygous mouse [74]. PTEN 
deletion can also alter the differentiation of cells at later 
stages of development; PTEN deletion in GABAergic 
neurons born in the MGE causes a decrease in the pro-
portion that mature into somatostatin-positive interneu-



Skelton/Stan/LuikartMol Neuropsychiatry 2019;5(suppl 1):60–7164
DOI: 10.1159/000504782

rons, and an increase in the proportion that mature to 
express parvalbumin [83].

The incidence of focal cortical dysplasia in humans 
with PTEN mutations [69, 70] implicates PTEN in neu-
ronal migration. Postnatally generated PTEN-knockout 
granule neurons in the dentate gyrus migrate further 
from the subgranular zone, an effect prevented by treat-
ment with the mTORC1 inhibitor rapamycin [87]. Ecto-
pic cerebellar granule neurons have also been observed in 
conditional PTEN knockout lines [75]. In a model of 
mTOR hyperactivation driven by in utero electropora-

tion with constitutively active Rheb, cortical neurons ex-
pressing have impaired migration, failing to reach the 
outer cortical layers and taking on the identity of deep-
layer neurons instead [88]. Normalizing cap-dependent 
protein translation downstream of mTOR by overex-
pressing constitutively active 4E-BP rescues this cortical 
mislamination. It is currently unknown whether PTEN 
loss in the developing cortex results in similar mislamina-
tion, or whether currently existing examples of PTEN-
associated migration defects are similarly dependent on 
cap-dependent protein translation.

Table 1. Mouse models used to study PTEN loss of function in the context of neurodevelopment, and the behavioral, morphological, 
and physiological abnormalities observed in each

Strain Targeted populations Behaviors Morphology and physiology Reference

Pten–/– somatic embryonic lethal disrupted differentiation into endo-, meso-,
and ectoderm

[71]

Pten+/– germline heterozygous ↓ social preference
↓ social novelty
↓ aggression
↑ marble burying
↑ tail suspension and forced swim
↓ dark-light emergence and open field

macrocephaly
↑ glia (astrocytes, oligodendrocytes, and microglia)
neuronal hypertrophy
↑ axon growth

[72, 73, 84, 86]

m3m4 carries 5 germline point mutations to the  
noncanonical NLS

↑ social interaction (males)
↓ motor coordination

macrocephaly
↑ glia
↑ oligodendrocytes
neuronal hypertrophy
↑ reactive gliosis

[74]

GFAP-Cre
× Ptenflx/flx

DG, cerebellar granule neurons, some hippocampal 
and cortical neurons, by P0–P14

epilepsy macrocephaly
cerebellar hyperplasia
neuronal hypertrophy

[75, 76]

GFAP-Cre
× Ptenflx/flx

astrocytes, 80–90% of DG and cerebellar granule 
neurons, 50–80% of cortical neurons, by P14

epilepsy macrocephaly
cellular hypertrophy
↑ astrocyte proliferation
hypermyelination
↑ dendritic spines
↑ spine size

[77, 117]

Emx1-Cre
× Ptenflx/+;
Emx1-Cre
× Ptenfls/flx

cortical neurons, astrocytes, and oligodendrocytes, 
from corticogenesis

↓ social preference macrocephaly
somatic hypertrophy
↑ glia

[84, 86]

NSE-Cre
× Ptenflx/flx

approximately 50% of excitatory forebrain neurons 
by the age of 4 weeks

epilepsy
↓ water maze 
↓ social novelty
↓ social preference
↑ startle response
↓ time in open field

macrocephaly
neuronal and dendritic hypertrophy
mossy fiber sprouting
ectopic dendrites
↑ dendritic spines

[78, 79, 92]

CamKIIα-Cre
× Ptenflx/flx

excitatory forebrain neurons, at the age of 2–8 weeks ↓ water maze normal cell size
laminar-specific dendritic hypertrophy
normal dendritic spines
↓ LTP
↓ LTD
↓ excitability

[104, 106, 107]

Nkx2.1-Cre
× Ptenflx/flx

MGE-derived interneurons ↓ social preference
↓ novel object interaction

↑ PV/SST ratio
cellular hypertrophy
↑ IPSCs (on pyramidal neurons)

[83]

DAT-Cre
× Ptenflx/flx 

midbrain dopaminergic neurons ↓ social preference
↓ social approaches (sex-dependent)

cellular hypertrophy
↑ axon growth
↑ DA release

[72, 100]

L7-Cre
× Ptenflx/flx

Purkinje neurons ↓ social preference
↓ social approaches
↓ grooming
normal memory

cellular hypertrophy
↑ excitatory drive
↓ tonic activity

[82]

NLS, nuclear localization sequence; MGE, medial ganglionic eminence; PV, parvalbumin; SST, somatostatin; DA, dopamine; IPSCs, inhibitory postsynaptic currents.
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Morphological Elaboration

Animal models of PTEN dysfunction demonstrate a 
role for PTEN in axon growth and guidance. Mice hetero-
zygous for PTEN have an enlarged corpus callosum, and 
axons arising from cortical neurons are overgrown [84, 
86]. The mossy fibers of PTEN knockout dentate gyrus 
granule neurons are overgrown and frequently have ec-
topic branches that project back to the dentate gyrus [79, 
89]. Loss of tuberous sclerosis complex (TSC) results in a 
similar phenotype of axon overgrowth and ectopic pro-
jections [90, 91]. Treatment with rapamycin prevents the 
overgrowth of PTEN-null mossy fiber axons [92], impli-
cating hyperactive mTOR signaling as a driver of axon 
outgrowth. However, by dynamically modulating PIP3 at 
the growth cone, PTEN also has a direct mechanistic role 
in axon growth, branching, and guidance. Axon growth 
requires accumulation of PIP3 at the leading edge of the 
growth cone. To maintain this pool of PIP3, PTEN is se-
questered away from the membrane [54]. Conversely, the 
presence of catalytically active PTEN at the growth cone 
prevents neurite outgrowth. When CK2, an inhibitory 
PTEN kinase, is prevented from phosphorylating PTEN, 
the axons of cultured hippocampal neurons fail to grow 
in response to nerve growth factor [56]. Likewise, the sites 
at which axonal filopodia sprout are predicted by PI3K-
mediated transient increases in PIP3 levels [93], allowing 
PTEN within the neurite to suppress the formation of 
new branches by controlling local PIP3 levels. Finally, 
chemorepellent cues mediate growth cone collapse by re-
cruiting active PTEN to the leading edge of the growth 
cone [54, 94]. In cultured chick dorsal root ganglion neu-
rons, chemorepellent Sema3A activation causes PTEN to 
translocate from microtubules at the center of a neurite 
to the growth cone membrane, decreasing local PIP3 lev-
els and causing the growth cone to collapse [54]. Simi-
larly, in hippocampal primary cultures, growth cone col-
lapse mediated by Sema4D requires active PTEN. In this 
process, Sema4D binding to Plexin-B1 to signals through 
R-Ras GAP to dephosphorylate PTEN, allowing it to en-
ter its active “open” conformation. Additionally, Plexin-
B1 signaling also suppresses the activity of the inhibitory 
PTEN kinase CK2α to prevent PTEN inactivation [55]. 
Therefore, in addition to driving neurite outgrowth 
through mTOR activation, PTEN at axonal growth cones 
plays a direct mechanistic role in regulating outgrowth, 
branching, and collapse.

The somata and dendrites of PTEN mutant or knock-
out neurons are enlarged. Neuron-specific conditional 
knockout mice have enlarged neuronal cell bodies and 

dendrites in the cerebellum, cortex, and hippocampus, 
sufficient to cause macrocephaly without abnormally in-
creased numbers of neurons [75, 76, 78]. In various trans-
genic and virally driven knockout models, neuronal so-
mata are universally enlarged. This includes cerebellar 
Purkinje neurons [82], granule neurons of the dentate gy-
rus [95–97], pyramidal neurons in the auditory [98] and 
motor [99] cortices, and midbrain dopaminergic neurons 
[100]. Enlarged cell bodies and arbors are also seen in 
both GABAergic and glutamatergic neurons in vitro 
[101]. PTEN knockout in dentate gyrus granule neurons 
increases the number of primary dendrites, dendrites that 
arise directly from the soma [96], and it decreases the de-
gree of self-avoidance within the dendritic arbor [97], af-
fecting both the sampling of afferent input and the post-
synaptic processing of that input.

Somatic overgrowth is gene dose-dependent. Viral 
shRNA-mediated PTEN knockdown in mature dentate 
gyrus granule neurons causes somatic hypertrophy [95, 
102] to a lesser degree than complete knockout in new-
born neurons [103]. In the cortices of PTEN haploinsuf-
ficient mice, somatic overgrowth is restricted to neuronal 
populations with higher endogenous levels of phosphory-
lated S6, such as layer 5 pyramidal neurons, indicating 
that populations with higher activity in downstream sig-
naling cascades may be more susceptible to PTEN loss 
[84]. In later development, the effects of PTEN differ both 
by cell type and by cellular compartment. Dendritic over-
growth in the cortex of CamKIIα-Cre+/– × Ptenflx/flx mice, 
in which PTEN is lost in forebrain excitatory neurons af-
ter several weeks of normal development, is restricted to 
the apical dendrites of layer 2/3 pyramidal neurons, with 
no effects on basal dendrites or to layer 5 pyramidal neu-
rons [104].

Neuronal cell bodies in the m3m4 mouse, which car-
ries germline mutations reducing the ability of PTEN to 
associate with the nucleus and the cell membrane, are also 
hypertrophic [74], indicating that appropriate subcellular 
localization of PTEN is critical for its regulation of cell 
growth. Several ASD-associated point mutations in the 
C2 domain of PTEN decrease the amount of PTEN pres-
ent in the nucleus; increasing the nuclear localization of 
2 of these mutants (D252G and W274L), by adding a ca-
nonical nuclear localization sequence (NLS) to the pro-
tein, partially rescues the increase in soma size [43]. Over-
expression of Y128L-NLS mutant PTEN, which has no 
protein phosphatase activity but retains some lipid phos-
phatase activity, partially rescues somatic hypertrophy in 
PTEN knockout neurons, while G129E-NLS, which is 
lipid-phosphatase dead but protein-phosphatase capable, 
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does not [43]. Thus, the nuclear lipid phosphatase activ-
ity by PTEN is important for regulating cell growth.

Mechanistically, both somatic and dendritic over-
growth of PTEN knockout neurons are likely to result 
from increased cap-dependent protein translation down-
stream of hyperactive mTORC1. A mechanistic evalua-
tion of dendritic branching in cultured hippocampal neu-
rons revealed that like PTEN knockdown, overexpressed 
or constitutively active PI3K, AKT, or Ras induce 
mTORC1-dependent dendritic overgrowth. Meanwhile, 
dendritic growth is reduced by knockdown of p70S6K or 
overexpression of 4EBP1 [105]. Somatic and dendritic 
hypertrophy of PTEN knockout neurons is rescued with 
rapamycin in vivo [87, 92, 104]. Overexpression of con-
stitutively active Rheb in L2/3 pyramidal neurons results 
in somatic and dendritic hypertrophy similar to PTEN 
knockout; both of these phenotypes are rescued by coex-
pression of constitutively active 4EBP1 [88]. Collectively, 
these results suggest that PTEN dysfunction drives so-
matic and dendritic overgrowth by increasing cap-depen-
dent protein translation downstream of mTORC1.

Synaptic Connectivity

PTEN regulates both the density and strength of glu-
tamatergic synapses. A number of experimental models, 
including transgenic mice, and a variety of viral gene ma-
nipulation schemes have been used to examine the den-
dritic spine densities of neurons after PTEN loss. Re-
markably, the various models show a wide variety of phe-
notypes, with some showing a robust increase, and others 
showing no change at all. Among transgenic mouse mod-
els, GFAP-Cre × Ptenflx/flx and NSE-Cre × Ptenflx/flx strains 
both have increased dendritic spine density in the cortex 
and hippocampus [77, 78]. In these models, PTEN is lost 
in about half the cortical and hippocampal neurons, and 
in nearly all granule neurons of the cerebellum and den-
tate gyrus. In the GFAP-driven line, this occurs prena-
tally, while the NSE-Cre driver line causes PTEN loss 
within the first 2 weeks after birth. A number of viral 
strategies to knock out or knock down PTEN have simi-
larly resulted in increased dendritic spine density of den-
tate gyrus granule neurons, including lentiviral shRNA 
knockdown [95], retroviral Cre expression in a Ptenflx/flx 
mouse [96], and retroviral CRISPR-Cas9-mediated 
knockout [103]. An AAV Cre-lox system likewise in-
creases dendritic spine density on neurons in the audi-
tory cortex [98]. In all of these models, increased den-
dritic spine density was associated with increased excit-

atory synaptic drive. Both strains of transgenic mice 
suffer from seizures [75, 79], and granule neurons and 
cortical neurons have both an increased frequency of 
spontaneous excitatory synaptic events and an increased 
amplitude of evoked events [96, 98]. These experiments 
convincingly demonstrate that, under the right condi-
tions, PTEN loss can dramatically increase excitatory 
synapse formation on neurons, rendering them hyperex-
citable. 

Paradoxically, not all models demonstrate the same in-
crease in excitatory synapse formation. CamKIIα-Cre × 
Ptenflx/flx mice do not have increased numbers of dendrit-
ic spines in the cortex or in the CA regions of the hippo-
campus [104, 106]. Notably, the visual cortical pyramidal 
neurons in these mice are hypoexcitable with reduced re-
sponses to visual stimuli in vivo [107]. Like the GFAP- 
and NSE-Cre driver lines, these mice progressively lose 
PTEN expression in increasing numbers of cortical neu-
rons with age, leading to mosaic knockout and affecting 
a majority of principal neurons in the cortex and hippo-
campus. The primary difference is that in the CamKIIα-
Cre line, Cre expression comes on much later, starting at 
two weeks and affecting some neurons for the first time 
as late as 8 weeks of age. Therefore, the CamKIIα-Cre × 
Ptenflx/flx mice first lose PTEN expression in circuits that 
are much more mature than in the other model systems. 
This suggests that with widespread PTEN loss in the 
brain, the effect on synapses depends on processes that 
occurred earlier in development.

A number of model systems rely on sparse viral infec-
tion to allow visualization using virally driven fluoro-
phore expression. We recently showed that increased 
dendritic spine density after post-synaptic PTEN knock-
out in dentate granule neurons depends on the ability of 
those dendritic spines to find suitable presynaptic con-
tacts, meaning that postsynaptic spine density cannot in-
crease beyond the number of available boutons [108]. 
With sparse virally mediated knockout, we speculate the 
observed increase in dendritic spine density is primarily 
due to the ability of the PTEN knockout neurons to out-
compete neighboring wild-type neurons for a limited 
pool of presynaptic terminals. One study that used cell-
filling with a patch pipette to visualize knockout neurons 
in brain slices with dense AAV-mediated PTEN knock-
out found no change in the dendritic spine density of 
PTEN knockout neurons. Instead, the only change to the 
dendritic spines was in their morphology, which was en-
larged and more mushroom-like [109]. This study was 
also performed in adult mice; later onset of PTEN loss 
could occur after critical periods for arborization have 
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closed, reducing the genesis or stabilization of new den-
dritic spines by preventing increases to the number of 
boutons. Since neurobiological deficits that emerge after 
developmental critical periods are more likely to be re-
versible after maturation, a close evaluation of differences 
between phenotypes in early- and late-onset conditional 
knockouts may inform which phenotypes might be more 
amenable to therapeutic interventions later in life.

The increased dendritic spine densities of PTEN 
knockout neurons are a source of increased synaptic con-
nectivity and excitatory drive. PTEN knockout increases 
the frequency and the amplitude of excitatory synaptic 
events [95–98], even when no increase in spine density is 
observed [109]. Several aspects of the morphology and 
physiology of PTEN knockout neurons can influence 
their excitability, including the number of dendritic syn-
apses, synaptic strength, the altered arrangement of 
branches in the dendritic arbor, and passive membrane 
properties [96]. The recruitment of presynaptic input ap-
pears to be unbiased, with granule neurons and cortical 
pyramidal neurons recruiting similar amounts of in-
creased input from multiple distinct afferents [98, 108]. 
This increased recruitment of excitatory input is not 
counterbalanced by an increase in the formation of in-
hibitory synapses [95–97]. The principles by which PTEN 
governs the excitability of glutamatergic neurons likely 
apply to other cell types as well. For example, PTEN 
knockout in MGE-derived interneurons increased the 
frequency of inhibitory postsynaptic currents on cortical 
pyramidal neurons [83], suggesting that PTEN loss in 
GABAergic neurons makes them hyperactive as well. 
However, the seemingly linear relationship between 
PTEN function, recruitment of excitatory synaptic input, 
and hyperexcitability is complicated by the diversity of 
neurons within the brain. Like other neurons, PTEN 
knockout in cerebellar Purkinje neurons causes them to 
recruit increased excitatory input. Contrary to expecta-
tions, this increased excitation is insufficient to override 
other physiological changes (i.e., decreased input resis-
tance) that render the neurons hypoactive. The end result 
of PTEN knockout in these neurons is a decrease in the 
tonic firing rate [82]. Therefore, a thorough analysis of 
ASD-relevant circuits in the PTEN knockout or hetero-
zygous brain may be required to uncover cell-type- and 
circuit-specific effects of PTEN loss.

The density of dendritic spines is determined by bal-
ancing the rates of synapse formation and elimination. 
Similar to axon growth cones, the formation and motility 
of dendritic filopodia are driven by PIP3 accumulation at 
the tip [110], suggesting that PTEN could inhibit inap-

propriate spine formation in the wild-type brain by trans-
locating to spine tips to prevent extension or promote 
collapse, as in axonal filopodia. A large portion of the ex-
cess dendritic protrusions on PTEN knockout neurons 
have a filopodial morphology, suggesting an increase in 
de novo spine formation [96]. However, in an analysis of 
the mechanisms of spine density regulation by PTEN, 
dendritic spine density was regulated by the protein phos-
phatase function of PTEN but not its lipid phosphatase 
function, since the expression of the G129E mutant pro-
tein, which has protein phosphatase activity but lacks lip-
id phosphatase activity, was able to rescue dendritic spine 
density in PTEN-null neurons, while the Y138L point 
mutant protein, which is selectively protein-phosphatase 
dead, was not [111]. Results from models of TSC also sup-
port an mTOR-independent role for PTEN in the regula-
tion of dendritic spine density, since the loss of TSC pro-
teins does not increase excitatory synaptogenesis [101, 
112, 113]. In contrast, hyperactive mTOR could be the 
driving force behind any deficit in dendritic spine elim
ination, since dysfunctional autophagy due to mTOR 
hyperactivation has been implicated in increased spine 
density due to a lack of autophagy-dependent synapse 
pruning [114]. A more nuanced analysis is required to 
determine both the relative contributions of spine forma-
tion and spine elimination to the increased connectivity 
that occurs with PTEN loss, and also which catalytic ac-
tivities of PTEN are most relevant to each process. This 
will in turn inform which mechanisms make the most 
promising therapeutic targets.

Compared to its postsynaptic effects, the effects of 
PTEN on the presynapse have received less attention. Ax-
onal arbors of PTEN knockout neurons are larger, and in 
some circuits the frequency of en passant boutons along 
the axon is increased [84, 89], meaning the total number 
of synapses in the PTEN deficient brain is likely to be in-
creased. The effects of PTEN loss on synaptic function 
(similar to that on dendritic spine density, may be age-
dependent. In the hippocampi of GFAP-Cre×Ptenflx/flx 
mice, basal transmission is decreased [77], while in the 
NSE-Cre×Ptenflx/flx mouse it is temporarily increased dur-
ing a window in early adulthood [115]. In autaptic cul-
tures, PTEN loss causes an increase in the size of the read-
ily releasable pool in both GABAergic and glutamatergic 
neurons. However, the spontaneous release rate is de-
creased in this system, while the paired-pulse ratio is in-
creased, indicating a decrease in the efficiency of vesicle 
fusion [116]. Although treatment with rapamycin rescued 
the increase in the number of presynaptic vesicles, TSC1 
knockout neurons in the same model system do not have 
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increased vesicular pool size or altered release rates [101]. 
Therefore, the changes to the vesicular pool and synaptic 
release may require the coactivation of mTOR and one or 
more other signaling pathways downstream of PTEN. 

Conclusion

PTEN is an upstream regulator of a signaling pathway 
in which many proteins are implicated in ASD, making it 
an especially interesting target of study in ASD etiology. 
The functions of PTEN in brain development are diverse. 
PTEN and the signal cascades it regulates influence brain 
development during cell proliferation and differentia-
tion, migration, neurite outgrowth, synaptogenesis, and 
myelination. It is not an understatement to say that PTEN 
influences every stage of neurodevelopment, including 
plasticity in the mature brain. At this point, it is unclear 
which, or what combination, of this constellation of cel-
lular changes forms the neurobiological basis for the 
symptoms of ASD. As our understanding of the cellular 
roles and mechanisms of PTEN improves, so too will our 
understanding of the etiology of its associated neurode-
velopmental disorders, including ASD, epilepsy, and cog-
nitive impairment, potentially leading to the develop-
ment of new diagnostic and therapeutic tools. 
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