
TBC1D24 genotype–phenotype
correlation
Epilepsies and other neurologic features

ABSTRACT

Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24.

Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and
37 published patients. TBC1D24mutations, identified through various sequencing methods, can
be found online (http://lovd.nl/TBC1D24).

Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30
independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients car-
ried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%),
and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We
detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness,
and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with
the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed
that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disor-
ders, are not necessarily the most disruptive to this gene function.

Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with
multisystem involvement and severity spectrum ranging from isolated deafness (not studied
here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal
intellect, to early-onset epileptic encephalopathy with severe developmental delay and early
death. There is no distinct correlation with mutation type or location yet, but patterns are emerg-
ing. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide
variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this
gene and its associated phenotypes. Neurology® 2016;87:1–9

GLOSSARY
ARF65 ADP ribosylation factor 6;DOORS5 deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures;
EIMFS 5 epilepsy of infancy with migrating focal seizures; Rab-GAP 5 Rab GTPase-activating protein; TBC 5 Tre2/Bub2/
Cdc16.

The gene TBC1D24 is involved in regulation of synaptic vesicle trafficking and in brain and
somatic development.1–5 It has recently been implicated in various human diseases, many of
which feature epileptic seizures1,3,6–14; mutations can also cause nonsyndromic deafness.15–18

TBC1D24 encodes a protein containing a Tre2/Bub2/Cdc16 (TBC) domain, shared by Rab
GTPase-activating proteins (Rab-GAPs). TBC domain-containing proteins regulate numerous
vesicular membrane-trafficking and sorting processes by modulating the activity of Rab-
GTPases.19 TBC1D24 interacts with the ADP ribosylation factor 6 (ARF6), a small GTP-
binding protein involved in membrane exchange between plasma membrane and endocytic
compartments.1,11 The protein also contains a TLDc domain, putatively involved in oxidative
stress resistance.20

In TBC1D24-associated disorders, including deafness, onychodystrophy, osteodystrophy,
mental retardation, and seizures (DOORS) syndrome, a wide spectrum of epilepsies have been
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reported. We evaluated the types of epilepsy
seen with a wide mutational spectrum in
TBC1D24, using new data from 11 previously
unreported and 37 published patients.

METHODS Standard protocol approvals, registrations,
and patient consents. This study was approved by the relevant
institutional ethics committees or review boards. Parental (or legal

guardian) written informed consent was obtained for all affected

children and adults with intellectual disability, or existing pub-

lished data were collated. Authorization has been obtained for dis-

closure of videos (videos 1–5 on the Neurology® Web site at

Neurology.org).

Participants. We collected data from a cohort of new patients

and contacted physicians to seek additional information about

published patients by using a standardized questionnaire. Avail-

able neuroimaging and EEG recordings were evaluated. Individ-

uals were included if they had a confirmed TBC1D24 mutation

and had epileptic seizures within their phenotype. We report 2

additional patients (31, 32) where a clear association of pheno-

type with changes in TBC1D24 could not be established: there-

fore, they were not included in the final analyses. In patient 31, 2

single nucleotide polymorphisms in the maternal allele were

found through a next-generation sequencing panel; in patient

32, array comparative genomic hybridization showed a 16p13.3

duplication including TBC1D24.

Procedures. TBC1D24 variants were identified through various

methods, detailed in supplemental data S1. Conserved motifs

were detected in MEME suite21 through discriminative motif

discovery. Bioinformatics and in vitro modeling methods are

described in supplemental data S1.

RESULTS Family history. The cohort includes 48 pa-
tients (28 men, 20 women) from 30 independent
families. Twenty-seven individuals are from 9
families (figure e-1), comprising 5 sibling pairs with
nonconsanguineous parents,3,11,14,22 1 pair with
consanguineous parents,8 4 members of a large
Arab-Israeli family with multiple consanguineous
unions,6 8 members of a large Italian family,1,7 and
3 members of a large Turkish family (all patients born
to consanguineous parents).9,10 Six other sporadic
patients, including one previously described,23 have
consanguineous parents; 15 patients (31%) are
isolated, from nonconsanguineous parents.

Longevity. Nine individuals (19%) were deceased
(average age at death 37 months, range 6–96
months).3,9,11,14 One death (6b), at age 18 months,
was defined as probable sudden unexpected death in
epilepsy.11 The other reported causes of death were
infectious episode (7a, 7c, 17a, 17b), respiratory failure
(6a), status epilepticus associated with a pulmonary
infection (7b), and unknown (26, 28). The average
age of the living patients was 21 years in January 2015.

Seizures and treatment responsiveness. The types of seiz-
ures and epilepsies were diverse. Seizure types included
infantile spasms and febrile convulsive, myoclonic,

clonic, tonic, absence, tonic-clonic with or without
apparent focal onset, and focal seizures with retained
or impaired awareness. Myoclonic or clonic seizures
were the most frequent seizure types (29/48, 60%),
often unresponsive to medication. Myoclonic seizures
were segmental (often involving eyelids, perioral
region, or other facial parts) or generalized, with
initially no loss of consciousness, but sometimes
evolving into tonic-clonic seizures. Various other
features of myoclonic seizures were described; they
could be unilateral or bilateral, migrating, alternating,
rhythmic, or pseudorhythmic, occurring both at rest
and on maintaining posture. They often occurred in
clusters, which could be very prolonged, lasting
several days. In some patients, they were triggered by
fatigue, drowsiness, intense and persistent stimulation
(acoustic stimuli or variations in light intensity),
repetitive movements, feeding, febrile episodes,
constipation, or delayed medication. Eighteen patients
had myoclonic epilepsy (including infantile myoclonic
and progressive myoclonic epilepsies). Semiologic
features of 5 patients, 4 with myoclonic epilepsy
(4, 23a, 23b, 24) and 1 with familial epilepsy of
infancy with migrating focal seizures (EIMFS) (6b),
are shown in videos 1–5. The other patients had
focal, multifocal, generalized, or unclassified epilepsy,
or early-onset epileptic encephalopathy (including
EIMFS). There was no marked variability of epilepsy
phenotype in affected siblings.

The average age at seizure onset was 7 months
(range from within 1 hour after birth to 8 years; SD
15 months). Thirty-eight (79%) individuals had
had status epilepticus, either convulsive or noncon-
vulsive, or prolonged seizures (.5 minutes). In 19
patients, seizures or status episodes were precipitated
by fever or infections.

In 30 patients, epilepsy was drug-resistant24; 18
patients responded well to treatment. The Italian
family with familial infantile myoclonic epilepsy was
drug-responsive, with 5 members (1a–1e) free from
tonic-clonic seizures and with rare myoclonic seiz-
ures, on valproate or phenobarbital, while the remain-
ing affected individuals (1f–1h) were not on any
antiepileptic medication, and experienced mild myo-
clonic seizures triggered by repetitive movements or
fatigue and rare tonic-clonic seizures (every 2–3
years). One patient (25) with generalized epilepsy
was seizure-free on phenytoin and clobazam. Two
siblings (12a and 12b) with focal seizures had signif-
icant improvement of seizure control after introduc-
tion of zonisamide; 1 patient (11) with infantile
myoclonic epilepsy had a good response to topira-
mate. Patient 15 had prolonged monthly tonic-
clonic seizures mostly during febrile episodes; there
was dramatic improvement over the last few years,
with freedom from tonic-clonic seizures for .12
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months, on a combination of oxcarbazepine and
sulthiame, possibly due to these drugs or less frequent
febrile episodes. Another 5 patients (5c, 5d, 20a, 20b,
22) had adequate seizure control on 2 or 3 antiepi-
leptic drugs. Details of epilepsy phenotypes are pre-
sented in table e-1.

EEG and neuroimaging. Results are reported in table
e-2. Thirteen patients had a normal interictal EEG
record. Various features, including slow background
activity and multifocal paroxysmal abnormalities,
were described in 35 patients. Only 2 patients had
a photoparoxysmal EEG response (1b, 1h). There
was no evidence of clinical photosensitivity in any
patient. Eye closure sensitivity25 was reported in one
patient with DOORS with generalized epilepsy (29).

Neuroimaging revealed cerebral or cerebellar atro-
phy in 16 patients. Five patients had delayed myelina-
tion; 3 others had hippocampal sclerosis. Eleven
patients had cerebellar abnormalities: signal hyperin-
tensity, especially in T2-weighted images (11, 14, 19,
25), atrophy (4, 5c, 5d, 7c, 10, 11, 13, 19), or mild
vermian hypoplasia (29).3,6,9,12,23,26,27 In patient 11,
progressive atrophy involved both cerebellar hemi-
spheres, but not the vermis. There was no specific
association among neuroimaging findings, pheno-
typic features, or prognosis.

Developmental course. Thirty-nine individuals had
intellectual disability or developmental delay, from
mild to profound. Only the 8 affected individuals
of the Italian family with familial infantile myoclonic
epilepsy (1a–1h) had normal psychomotor develop-
ment and no signs of cognitive deterioration over an

average follow-up of 52 years. Patient 2 had normal
development to the most recent follow-up (aged 7
months).

Physical examination. Fourteen patients (29%) had
DOORS syndrome (19–30). Thirty-eight patients
(79%) had abnormal physical examination. The
most common facial feature was a broad nasal
bridge (7 individuals). Twelve individuals had
cranial shape or growth abnormalities. Acral
manifestations were found in 17 (35%) patients, all
but 3 with DOORS syndrome. The most frequent
neurologic sign was muscle hypotonia. Seven patients
had ataxia. Eight patients had extrapyramidal signs
(table e-3). The involvement of other organs is
presented in supplemental data S2. Three patients
without DOORS (17a, 17b, 18) had bilateral
sensorineural hearing loss or deafness. Thirteen
patients (27%), including 6 patients with DOORS,
had signs of visual impairment. Patients 8a and 23b
both survived an episode of cardiac arrest of unknown
cause.

Genotype–phenotype correlation. The TBC1D24 mu-
tations in the 48 individuals are presented in tables
e-1 and e-4. All patients had biallelic mutations, but
we also include in this analysis patient 24, in whom
only one TBC1D24mutation could be identified, but
who has a typical DOORS phenotype.

Figure 1 shows the different types of mutations
and the related phenotypes. We noted an unfavorable
outcome associated with frameshift, nonsense, or
splice-site mutations, indicating that loss of function
produces more severe disease. At least one such

Figure 1 Genetic and phenotypic heterogeneity

The diagram illustrates the exonic structure of TBC1D24 isoform 1 (NM_001199107.1), with the introns as thin lines not drawn to scale. The noncoding
exonic regions are drawn in gray, and the coding regions thicker and in color (orange for Rab GTPase-activating protein [Rab-GAP] domain, blue for TLDc
domain, and yellow for the rest). The location of the mutations identified in various epilepsy syndromes is shown, according to the severity of the epilepsy
phenotype. No clear pattern of genotype–phenotype correlation emerges. Circle 5 myoclonic epilepsy; square 5 generalized epilepsy; triangle 5 focal
epilepsy; diamond 5 early-onset epileptic encephalopathy; hexagon 5 unclassified epilepsy. Black 5 death; red 5 drug-resistant epilepsy; blue 5 drug-
responsive epilepsy or seizure-free. D 5 DOORS syndrome. Black arrows 5 missense mutations; red arrows 5 frameshift mutations; gray arrows 5 non-
sense mutations; blue arrows 5 splice-site mutations; * 5 recurrent mutations.
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mutation occurred in 17 patients. Of these, 15 had
drug-resistant epilepsy and 8 of them died by the age
of 7 years. Only the 2 siblings (12a, 12b) with focal
seizures and a frameshift mutation (in the TLDc
domain) in trans with a missense (p.Ala39Pro) muta-
tion had adequate epilepsy control, following the
introduction of zonisamide. The diagnosis of
DOORS per se was not associated with a specific
epilepsy type or outcome. No specific pattern of out-
come or severity emerged in association with missense
mutations, except for missense mutations associated
with death: these mutations occurred in or before the
TBC domain. Frameshift, nonsense, and splice-site
mutations led to drug-resistant epilepsy or death,
except when occurring in the last exon (figure 1). In
supplemental data S3, we present genotype–phenotype
correlation by mutation, rather than by patient, cross-
referencing data from tables.

To identify conserved protein regions in silico, we
compared human TBC1D24 andDrosophila Sky pro-
tein sequences with 3 vertebrate and 7 insect homo-
logues (figure 2A). To find motifs specific for this
TBC domain protein, we defined a negative set
(human and mouse TBC1D1 and TBC1D7). Dis-
criminative motif discovery yielded 7 highly con-
served motifs (E , 102100; p , 10220) of 21–22
amino acids, completely conserved among Drosophila
species and in key amino acids across species, signi-
fying the importance of these domains (figure 2B).
Interestingly, the second motif (figure 2B) contains
the site of the most frequent mutation (p.Arg242Cys)
in patients with DOORS, and the central arginine
residue is conserved in every species tested. The res-
idue altered in the p.Arg242Cys mutation is flanked
by 2 lysines and pairs of valines and leucines in all
sequences analyzed, suggesting that this motif’s pos-
itive charge is highly conserved. In addition, motif 1
encompasses the p.Pro93Ser mutation identified in
patient 9 (table e-1). Mutations also lay in motif 3,
located in the region between the region between the
TBC and TLDc domains, and in motifs 4 and 7,
located in the TLDc domain (figure 2C), though
no clear correlation with the phenotype emerges.

To determine whether the position of the amino
acid change in TBC1D24 or the corresponding sever-
ity of the disease correlate with perturbation of induc-
tion of neurite overgrowth, we studied a panel of
4 human TBC1D24 mutants, representing the phe-
notypic breadth from this study: Arg40Leu,3

Arg242Cys,3 Arg270His,23 and Arg360Leu.12 In pri-
mary mouse cortical cells expressing wild-type
TBC1D24, we observed a large (;10-fold) increase
in neurite outgrowth compared to those expressing
a control empty vector, as expected (figure 3). All 4
TBC1D24 mutants tested were also able to promote
outgrowth; however, whereas expression of either the

Arg242His or Arg360Leu mutant leads to a signifi-
cant reduction in neurite length compared to wild-
type, the Arg40Leu and Arg270His mutants did not
significantly affect outgrowth (figure 3). Together,
these data indicate for the first time that mutations
causing the most severe TBC1D24-associated disor-
ders do not necessarily give rise to the most disruptive
functional effects on neurite outgrowth in cultured
neurons.

DISCUSSION The reported broad spectrum of epi-
leptic and developmental phenotypes associated with
TBC1D24 mutation is unusual, and seen only with
a few epilepsy-related genes, mostly with dominant
causal mutations (e.g., SCN1A, SCN2A, SCN1B,
KCNQ2, KCNT1, PRRT2, DEPDC5, TSC1, and
TSC2). TBC1D24 is associated with an even
broader phenotypic spectrum, including a number
of conditions other than epilepsy alone (i.e.,
DOORS syndrome and nonsyndromic deafness)
and involving multiple organs other than the brain
(see supplemental data S2). Furthermore, TBC1D24
epilepsy syndromes occur with both compound
heterozygous and homozygous recessive mutations.
The additional diversity of TBC1D24 phenotypes
might be due to its broader expression pattern;
TBC1D24 is expressed in several human tissues,
with the highest expression in brain, in multiple
cerebral areas, including all layers of cerebral cortex
and hippocampus.1,10,28

Although early-onset myoclonic epilepsy, with
onset in the first year of life and myoclonic seizures
often occurring in prolonged clusters, and drug resis-
tance are the most common TBC1D24 epilepsy phe-
notypes, many dissimilarities have emerged in our
cohort. We delineate a spectrum ranging from
a benign pattern, restricted to infancy, with complete
seizure control and without intellectual disability, to
early-onset epileptic encephalopathy with drug resis-
tance, severe developmental delay, intellectual disabil-
ity, and early death (figure 4). Seizure types can be
diverse, often triggered by fever or infections. Epi-
sodes of status epilepticus or prolonged seizures are
common. Interictal EEG and neuroimaging results
are variable. There was no marked intrafamilial phe-
notypic variability in affected patients with the same
mutations, unlike that observed in families with
SCN1A orDEPDC5mutations. While we noted phe-
notypic pleiotropy for the same mutation in unrelated
patients, in most patients these were compound het-
erozygous with a different second mutation, con-
founding detailed comparison.

Mutations leading to DOORS syndrome and
those causing primarily epilepsy syndromes have
mostly been mutually exclusive to date. This pheno-
typic pleiotropy is unexplained by current knowledge,
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and few genotype–phenotype correlations emerged
from our study. More severe phenotypes were associ-
ated with nonsense, frameshift, or splice-site muta-
tions, as expected, except when these occurred in the
last exon. The latter might lead to milder phenotypes
because RNA escapes from nonsense-mediated decay
when truncating mutations occur in the ultimate
exon and the end of the penultimate exon. A more
variable outcome was found with missense mutations;
these were associated with death only when they
occurred in or before the TBC domain (figure 1).
Otherwise, the occurrence of mutations in the TBC
domain vs the TLDc domain did not seem to lead to

different clinical phenotypes. A TLDc domain is also
found in the protein encoded by the human gene
OXR1. Mice lacking Oxr1 display cerebellar neuro-
degeneration: neurons are less susceptible to oxidative
stress-induced neurodegeneration when Oxr1 is over-
expressed both in vitro and in vivo.29,30 Not all pa-
tients with mutations in the TBC1D24 TLDc
domain in our study show clinical or neuroradiologic
evidence of cerebellar neurodegeneration. The involve-
ment of the TLDc domain in oxidative stress resis-
tance,20 and thereby potentially in inflammatory
mechanisms, might underlie the role of fever or infec-
tions in precipitating seizures or status in some

Figure 2 Disease-causing mutations in evolutionarily conserved motifs

(A) Seven highly conservedmotifs are identified in TBC1D24/Sky in an interspecies comparison against related Tre2/Bub2/Cdc16
(TBC) domain proteins. The RabGTPase-activating protein (Rab-GAP) TBC domain is drawn in orange, the TLDc domain is drawn in
blue, and the rest is in yellow, as in figure 1. (B) The consensus sequence of the TBC domainmotif 2 contains an arginine residue (*)
that is substituted in the most frequent pathogenic mutation seen in patients with deafness, onychodystrophy, osteodystrophy,
mental retardation, and seizures. Further residues affected by pathogenic mutations are indicated by an asterisk above the
residue. (C) Motif 1 in the TBC domain, motif 3 in the region between the TBC and TLDc domains, as well as motifs 4 and 7 in
the TLDc domain contain further residues affected by pathogenic mutations, as indicated by an asterisk.
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patients. Conservation analysis showed a highly con-
served arginine residue underlying the recurrent
pathogenic chr16:2546873C . T transition, result-
ing in an arginine to cysteine (p.Arg242Cys) sub-
stitution, in the TBC domain. In the TLDc domain,

4 conserved motifs were identified. However, the
analysis of evolutionarily conserved motifs also does
not provide a complete answer to the diversity
observed.

The phenotypic spectrum observed might partly
be explained by the effect of individual TBC1D24
mutations that affect synthesis, stability, and activity
of the protein. Alternately, variations in TBC1D24-
associated proteins and pathways could underlie the
disease spectrum. The TBC1D24 protein interacts
with ARF6,1 a small GTP-binding protein implicated
in exchange between the plasma membrane and the
endocytic compartments.31 The Drosophila homolog
of TBC1D24, Sky, also interacts with, and activates,
Rab35, a small GTPase involved in endosomal traf-
ficking of synaptic vesicles, regulating neurotransmit-
ter release.2,32 Several genetic modifiers of this
pathway were identified recently.5 In the CNS,
ARF6 participates in several aspects of neuronal
development and plasticity.33–35 Interestingly, some
pathogenic mutations in TBC1D24 affect protein
binding to ARF6 and result in severe impairment of
neuronal development.1,4,11 Furthermore, overexpres-
sion of TBC1D24 induces a marked increase in neu-
rite length in vitro.1,6 From these initial studies, it was
postulated that each of the disease-causing mutations
tested (Phe251Leu, Asp147His, and Ala515Val) were
likely to be loss-of-function based on the observed
reduction in outgrowth compared to wild-type.1,6

We investigated this specific feature of TBC1D24
function for a range of pathogenic mutations and
showed that mutations that cause even the most
severe seizure-related disorders with neurodegenera-
tion are not necessarily detrimental to neurite out-
growth in the chosen assay. Thus, we found no
obvious correlation between this particular function
of TBC1D24 in neurons and the phenotypic spec-
trum we describe here. However, we provide func-
tional data for the first time that compare pathologic
human mutations in parallel across the spectrum of
TBC1D24-associated disorders. Neuronal outgrowth
has been used previously as an assay to assess
TBC1D24 function, and our data extend these find-
ings, showing that the relative position of the amino
acid change in the protein, with respect to disease
severity, does not correlate with abnormal outgrowth.
As such, we have discovered that the association
between TBC1D24 genotype and phenotype is com-
plex and is likely to involve several aspects of the
gene’s function, potentially beyond the ARF6-medi-
ated trafficking and signaling pathways described to
date.

TBC1D24 activity also regulates synaptic func-
tion. The inhibition of excessive endosomal sorting
of dysfunctional synaptic vesicle proteins and their
subsequent breakdown at lysosomes, by partially

Figure 3 Neurite outgrowth associated with TBC1D24 mutants

Primary mouse cortical cells were transfected with wild-type (WT) or mutant TBC1D24
constructs as indicated and representative images of transfected neurons are shown. Quan-
tification of neurite length shows that expression of Arg242Cys (R242C) and Arg360Leu
(R360L), but not Arg40Leu (R40L) or Arg270Cys (R270C), results in a significantly reduced
induction of outgrowth compared to WT. ***p , 0.001, 1-way analysis of variance; scale
bar 5 10 mM.
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inhibiting the ESCRT complexes or the HOPS com-
plex, significantly suppresses the excessive neurotransmis-
sion in Sky mutants.2,5 Variations in the aforementioned
pathways may thus modify the neuronal pathway in
which Sky/TBC1D24 functions, further adding to the
phenotypic spectrum associated with its loss of function
in patients.

Though we used a standardized template for data
collection, we acknowledge that one limitation of the
study is the involvement of different clinicians in
defining the clinical phenotype, with potential differ-
ences in interpreting clinical, EEG, and neuroradio-
logic patterns. In several patients, segmental
myoclonic seizures were detected on video-EEG
telemetry, but had not been reported by the parents.
Involvement of other systems, e.g., hearing, might
also have not been formally assessed and therefore
the concomitant presence of DOORS syndrome
might have been underreported. We collected a mod-
est number of patients in absolute terms, but
TBC1D24-related epilepsy is rare and we report a rela-
tively large series compared with other rare genetic
neurologic conditions with epilepsy. We only included
patients with confirmed TBC1D24mutations and epi-
leptic seizures as part of their phenotype. This might

represent ascertainment bias, and we may have missed
individuals with neurologic involvement other than
epilepsy.

Our findings support the need to test for
TBC1D24 mutation if the phenotype is appropriate.
Screening should be considered, for example, if
a patient has myoclonic seizures, intellectual disabil-
ity, and any other extra-CNS features (including
facial, cranial, acral, or other organ abnormalities).

Anyone interested in joining the TBC1D24 con-
sortium should contact the corresponding authors.
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